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Spatial and temporal characteristics of modulated waves 
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We have used flow-visualization and spectral techniques to study the spatial and 
temporal properties of the flow that precedea the onset of weak turbulence in a fluid 
contained between concentric cylinders with the inner cylinder rotating (the circular 
Couette system). The first three flow regimes encountered as the Reynolds number is 
increased from zero are well-known - Couette flow, Taylor-vortex flow, and wavy- 
vortex flow. The present study concerns the doubly periodic regime that follows 
the (singly periodic) wavy-vortex-flow regime. Wavy-vortex flow is characterized 
by a single frequency fit which is the frequency of travelling azimuthal waves 
passing a point of observation in the laboratory. The doubly periodic regime was 
discovered in studies of power spectra several years ago, but the fluid motion corres- 
ponding to  the second frequency fa WM not identified. We have found that fe corres- 
ponds to a modulation of the azimuthal waves; the modulation can be observed 
visually as a periodic flattening of the wavy-vortex outflow boundaries. Moreover, 
in addition te the previously observed doubly periodic flow state, we have discovered 
11 more doubly periodic flow states. Each state can be labelled with two integers 
m and k, which are simply related to physical characteristics of the flow: m is the 
number of azimuthal waves, and k is related to the phrtse angle between the modula- 
tion of successive azimuthal waves by A$ = 2nk/m. This expression for the phase 
angle was first conjectured from the flow-visualization measurements and then 
tested to an accuracy of 0.01n in spectral measurements. Recently Rand (1981) 
has used dynamical-systems concepts and symmetry considerations to derive 
predictions about the space-time symmetry of doubly periodic flows in circularly 
symmetric systems. He predicted that only flows with certain space-time symmetries 
should be allowed. The observed flow states are in agreement with this theory. 

1. Introduction 
A fluid contained between concentric cylinders with the inner cylinder rotating 

and the outer cylinder fixed (the circular Couette geometry) is one of a number of 
hydrodynamic systems which exhibit a sequence of distinct time-independent and 
time-dependent flow regimes that precede the transition to weak turbulence. The 
final preturbulent-flow regime in the circular Couette system that we have studied 
is characterized by power spectra that consist of two instrumentally sharp com- 
ponents and their integer-linear combinations. The onset of weak turbulence in this 
system is markedby the appearance of a broad spectral component in addition to the 

t Present address: Department of Physics, University of Houston, Houston, TX 77004. 
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sharp frequency components of the doubly periodic regime. Just beyond the onset 
of weak turbulence the integrated spectral energy of the broad component is much 
less that the energy of the sharp components, and the turbulent intensity is small. 

The power spectra and flow photographs for weakly turbulent flow in the Couette 
system differ only slightly from the spectra and photographs obtained for the final 
preturbulent flow. Hence it is reasonable to expect that the onset of turbulence will 
be easier to understand for such a flow than for flows such as plane Poiseuille flow 
in which the initial turbulent flow is quite different from the laminar flow which 
precedes it. 

The idea that weakly turbulent flows can be described by only a few degrees of 
freedom was first discussed by Lorenz (1963a, b )  and Ruelle & Takens (1971). In  
the past few years a number of investigators have found chaotic behaviour in models 
with a small number of nonlinear coupled ordinary differential equations. Although 
the models have been found to display a variety of types of dynamical behaviour, no 
realistic model of a real weakly turbulent flow has so far been obtained. 

The selection of the appropriate modes for models with a finite number of modes 
will be greatly aided by the knowledge of the spatial and temporal characteristics of 
the preturbulent flows. The present work describes these characteristics for the final 
preturbulent flow in a system that exhibits weak turbulence. 

In Q 2 we define the system parameters and briefly review relevant past experi- 
ments, and in 5 3 we describe our experimental methods. The experimental results 
are presented in 5 4 and are compared with the theory of Rand (1981) in 3 5. The 
work is discussed in 6. 

2. Background 
Flows between concentric cylinders with the outer cylinder at rest are characterized 

by the following parameters : the radius ratio 11 = a/b, where a and b are respectively 
the inner and outer radii of the annulus; the Reynolds number R = aQ(b-a)/v, 
where R is the angular velocity of the inner cylinder and v is the kinematic viscosity ; 
the aspect ratio I? = h/(b  -a) ,  where his the height of the annulus; and the boundary 
conditions (either fixed or free) at  the ends of the annulus. 

Most of our experiments discussed in this paper were conducted on a system with 
7 = 0.883 and I' = 20; these parameters are typical of those used in many previous 
studies. For other q and I' the sequence of transitions can be quite different from 
that discussed below. 

The following sequence of regimes has been observed for r ]  = 0.883 and I? = 20 
(see DiPrima & Swinney 1981). At sufficiently small R the flow is nearly azimuthal 
except near the ends of the annulus ; the flow between infinitely long cylinders would 
be purely azimuthal. For R above a critical value R,, the azimuthal flow is unstable 
and a new flow, Taylor-vortexflow (TVF), develops (Taylor 1923). In TVF, toroidal 
vortices encircle the inner cylinder and are stacked in the axial direction. For 
R/Rc > 1.2, travelling azimuthal waves form on the Taylor vortices. Coles (1965) 
found that the wavy-vortex flow (WVF) observed at a particular Reynolds number is 
not unique. In a system with I? = 27.9 he observed at some R as many as 25 different 
stable states characterized by different numbers of azimuthal waves m and axial 
vortices N .  Velocity power spectra for WVF consist of a single frequency fi and its 
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harmonics; fi is found experimentally to equal the frequency with which the waves 
pass a point of observation in the laboratory. 

Above R/R,  = 10.2, Gollub & Swinney (1975) found that a second frequency 
appears in the velocity power spectra. Although these results were reproduced and 
extended in other laboratories (Walden & Donnelly 1979; Mobbs, Preston & Ozogan 
1979; Bouabdallah & Cognet 1980), no other values of f2 were reported nor was any 
information obtained about the fluid motion corresponding to f2.t Using flow- 
visualization techniques, Gorman discovered the motion of the fluid which corres- 
ponds to f a .  Gorman & Swinney (1979) reported these characteristics of the mode f2 : 
the mode corresponds to both an amplitude and frequency modulation of the 
azimuthal waves; the magnitude of fz is different for different values of m ;  and for a 
given m there are multiple values of fz which correspond to different spatial charac- 
teristics of the modulation. The present paper reports a detailed flow-visualization 
and spectral study of the spatial and temporal characteristics of modulated wavy- 
vortexflow (MWVF). 

The next transition that occurs at larger R/Rc is marked by the appearance of a 
broad frequency component fB in the power spectrum. Thus the MWVF regime is the 
last preturbulent-flow regime (Fenstermacher, Swinney & Gollub 1979). 

3. Experimental techniques 
3.1 The concentric-cylinder system 

The cylindrical annulus used in these experiments has inner and outer radii of 
5.250 and 5.946cm, respectively. The inner cylinder is brass with a black oxide 
coating, and the outer cylinder is precision-bore glass tubing. The lower horizontal 
fluid boundary is established by a Teflon ring attached to the outer cylinder, and the 
upper boundary is left free or is established by a ring similar to that a t  the lower 
boundary. Any aspect ratio from 0 to 44 can be selected by moving the upper ring. 
Most measurements were made with an aspect ratio of 20, thus largely avoiding 
(i) the end effects that occur in short annuli (see, for example, DiPrima & Swinney 
1981, 5 6.6; Benjamin 1978) and (ii) the dislocations that occur in long annuli 
(Donnelly et al. 1980). 

3.2. Flow-visuulization measurements 
Flow patterns were rendered visible in water a t  room temperature using a suspension 
of small (about 5 x 30 pm) platelets (Kalliroscope AQlOOO) that align with the flow. 
In order to determine the time evolution of the wave pattern it was necessary to 
modify the apparatus used in a previous experiment (Gorman & Swinney 1979) so 
that the entire annulus could be viewed at  all times. Two mirrors were used to 
obtain photographs of five overlapping images, each subterlding about 110' azimuthal 
angle, as shown in figure 1.  In  figure 1 the direct view of the cylinder is labelled ( 1 )  
and the four images are labelled (2)-(5), with the numbers increasing in the direction 
of the cylinder rotation. Figure 2 is a typical photograph obtained with the mirror 
arrangement shown in figure 1.  

Still photographs and cine films were made of each WVF and MWVF state that was 

t The frequency fa was designated wa by Gollub & Swinney (1975) and Fenstermacher, 
Swinney & Gollub (1979) ; they observed a transient component, designated w2, at lower R/R,. 

5-2  
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FIGURE 1. (a) The mirror arrangement for simultaneous observation of all the waves around 
the annulus. (b)  The cylinder and its four images as seen by an observer in the laboratory; the 
arrows indicate the direction of the motion. 

FIGURE 2. The complete wavy-vortex pattern for rn = 5, photographed using the mirror 
arrangement diagrammed in figure I .  

observed. The still photographs were taken on Tri-X film with an Olympus OM-1 
35 mm camera with 135 mm lens and a 2 x teleconverter, and the prints were made 
on Ilfospeed 3.1 M RC paper. Cine pictures were taken with a Kodak Special Reflex 
camera with a 50 mm lens on Tri-X reversal 7278 film shot at 24 frames/s with a 
20 ms exposure time for each frame; in 20 ms at  B/Rc = 10 the waves move about 
0.1 cm in the azimuthal direction, which is much less than the azimuthal wavelength 
(8.8 cm for rn = 4) or the axial wavelength (1-5 cm). 

The time evolution of each wave was determined in a frame-by-frame analysis of 
the movie films. A LW International Photo Optical Data Analyzer Model 224A 
Special cine projector, which can go forward or backward one frame at  a time without 
loss of focus, was used to determine the film frame numbers a t  which each azimuthal 
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wave had successive modulation maxima-i.e. the frame numbers at  which the 
vortex outflow boundary was the flattest. 

3.3. Power spectra 
Fenstermacher et al. (1979) used Imer-Doppler velocimetry to measure the radial 
component of the fluid velocity. A disadvantage of the laser-Doppler technique is 
that the spatial character of the flow cannot be determined from these single-point 
measurements. The flow pattern cannot be simultaneously visualized because the 
scattering particles used in the Doppler velocity technique are small (typically 
0 4 p m  diameter) and isotropic, so the fluid appears homogeneous. We have not 
succeeded in making Doppler measurements with the platelets used in flow visual- 
ization. 

We have made simultaneous spectral and flow-visualization measurements by 
measuring, instead of the velocity, another dynamical variable - the intensity of 
light scattered by the platelets used in flow visualization (Donnelly d al. 1980). The 
flow was seeded with platelets and illuminated with incoherent light. The mattered 
light was collected from a region equal to about one-quarter of the axial wavelength 
and was imaged on a photodiode. The photocurrent was digitized and recorded in the 
computer where the power spectrum was computed from time-series records of 1024 
or 8192 points. The resultant spectra have the same features as those obtained from 
the laser measurements. 

3.4. Frequencies f l y  fa, and f;l 
The frequency fl is the frequency of the azimuthal waves passing a fixed point in the 
laboratory; fa is the frequency of modulation of these waves, as determined by an 
observer in the laboratory; and fi is the modulation frequency as determined by an 
observer fixed in a reference frame that rotates in phase with the azimuthal waves. 
In  general, f;l + fa; however, there is a relationship between fa and f;l which is 
discussed in § 4.2. , 

Values of fl and f2 accurate to 0.5 % were obtained from power spectra, but fl and fa 
were also determined to within 1% simply by using a stop-watch to determine 
by eye in real time or from movie films the time required for 20 waves or for 20 
modulation cycles to pass the observer. 

In  WVF it is clear that the lowest-frequency component in the spectrum is the 
fundamental fl. When a second fundamental frequency occurs in a power spectrum, 
it is not possible to identify which of the spectral components (that include funda- 
mentals, harmonics, and combinations) correspond to the physical motion of the 
fluid, i.e. the modulation of the waves. Gollub & Swinney (1975) chose the most 
intense new spectral component as the second characteristic frequency ; however, in 
our comparison of power spectra with visualization measurements it was found that 
in general f2 was not the most intense new spectral component in MWVF. Thus the 
identification of fa in the spectrum was determined from the vizualization measure- 
ments. 

In  a reference frame that rotates in phase with the travelling azimuthal waves, an 
observer sees only one frequency fi; This frequency was determined from a frame- 
by-frame analysis of cine films for each state of the flow. Each wave was followed 
through many successive oscillations (flattenings of the vortex outflow boundary) 
as the wave rotated around the annulus. 
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FIQURE 3. Wavy-vortex flow for m = 4, 5, 6, 7. Successive waves around the annulus in the 

direction of wave rotation are labelled 1, 2, . . . , m. 

4. Experimental results 
Each different wave pattern that we have observed in doubly periodic MWVF will 

be shown in 5 4.1 to be characterized by two integers m and k ;  hence the states will 
be labelled mlk. The frequencies that are characteristic of each state are described 
2- 5 4.2. Measurements of frequency modulation are described for two of the states in 
5 4.3. The procedure for producing each of the MWVF states is described in 0 4.4. 

4.1. Wave patterns in doubly periodic M W VF 
In  WVF the wave patterns have m-fold rotational symmetry. The vortex inflow 
and outflow boundaries are both S-shaped, as figure 3 illustrates for states with m = 4, 
6, 6 and 7. The whole wave pattern rotates as a rigid body about the cylinder axis; 
hence the pattern is at  rest for an observer fixed in a reference frame that rotates 
with the waves. 

Beyond the onset of MWVF, a vortex outflow boundary, which is seen in the 
photographs as the darker of the two lines bordering a vortex, periodically oscillates 
from the S-shape shown in figure 3 to the flattened shape, as seen, for example, for 
the state labelled 5/0 in figure 4. In  MWVF all the waves in the axial direction are 
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FIQURE 4. Photographs of nine of the observed modulated wavy-vortex flow states. Successive 
waves around the annulus in the directiou of wave rotation are labelled 1,2, . . ., m. For w h  state 
a t  least one wave is flattened; it is labelled 1. For the k = 0 states all the wavea are simultan- 
eously modulated (flattened), aa shown, while for the k =+ 0 states only the wavea labelled 1 are 
completely flattened, except for the (2-fold symmetric) 4/2 state, where both waves (1) and (3) 
are completely flattened. 

modulated in phase, while in the azimuthal direction the wave modulation can have 
the same phase, as in the 510 state in figure 4, or the modulation phase can vary with 
angle, as in the 5/1 state, where wave (1) is flattened and wave (3) is S-shaped. 

We have determined the temporal evolution of the wave patterns for different 
MWVF states by analysing cin6 film frame by frame. The five overlapping images of 
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the annulus in the cine films made it possible to follow each individual wave m it 
rotated and its amplitude oscillated. For each of the m waves in a particular MWVF 
state the successive film frame numbers at which a wave flattened were measured, 
thus determining the relative phase of the modulation for each wave. This analysis 
showed that, for an observer b e d  in a reference frame that rotates with the waves, 
the azimuthal and temporal dependence of the wave pattern can be described by a 
function of the form a[2nf3 - #(&)I, where f;l is the frequency of oscillation of any 
point on the wave pattern and the temporal phase angle # depends only on the 
azimuthal angle V ,  which is measured with respect to the rotating frame and incremes 
in the direction of cylinder rotgtion (Swift, Gorman & Swinney 1981). The principal 
result of our experiment8 is that the phase angle g5 satisfies the simple expression 

( 1 )  

where k is an integer. 
This empirical equation was initially conjectured on the basis of an analysis of the 

cine films. The phase difference 2nk/m determined from this analysis had an uncer- 
tainty of 0.15~.  A more stringent test of this conjectured equation was then provided 
by an analysis of power spectra, atj described by Swift et al. (198 1 )  ; they show that 
a departure from ( 1 )  by only 0.01n would produce spectral components that are 
absent from our spectra. 

Equation ( 1 )  implies that for a given m there are only m distinct MWVF patterns. 
We have chosen k values from - (gm - 1) to t m  for even m, and k values from 
- &(m- 1 )  to #(m- 1) for odd m. The schematic diagrams in figure 6 show the 
temporal evolution of wave patterns for the states shown in figure 4. Each wave is 
represented by a sine function whose amplitude changes with time. The modulation 
is represented schemcctically as a uniform flattening of each wave, although alternative 
pictures of the modulation are possible (see 8 6.1) .  

The enhanced horizontal lines indicate a maximum of the modulation, and their 
sequence can be used to specify each state. For states with k = 0 the vortex outflow 
boundaries of all waves simultaneously flatten, as figures 4 and 5 illustrate. For 
k = 1 ,  successive waves are modulated in sequence; that is, waves (l), ( 2 ) ,  ..., (m) 
successively flatten, as figure 6 illustrates for the 4 / l ,  5 / 1 ,  and 6/1 states. 

For the 4/2 state the modulation phase angle is n ; hence the phase angle of the 
third wave relative to the first is 2n, so they flatten simultaneously, as shown in 
figure 4 and illustrated in figure 5 .  Waves ( 2 )  and ( 4 )  are modulated simultaneously, 
n out of phase with ( 1 )  and (3) .  For the 5 / 2  state the modulation phase angle is 
$n; the phase angles of waves ( 2 )  to ( 5 )  relative to wave (1) are: 0*8n, 1*6n, 2.4n 
(or 0.4n), and 3-2n (or 1 . 2 ~ ) .  Thus the sequence of wave flattenings is ( l ) ,  ( 4 ) ,  ( 2 ) ,  (5) ,  
( 3 ) ,  as figure 5 illustrates. 

Different starting procedures are used to produce different m/k states, as discussed 
in 5 4.4. The characteristics of the twelve observed states are summarized in table 1 ; 
each of these states is stable indefinitely, once it is produced. It is probable that some 
of the predicted but unobserved m/k states are stable, but we have not yet found a 
way of producing them. 

With the exception of the m = 3 state we have made cine films and recorded power 
spectra for each of the observed states. Figures 4-7 illustrate this documentation for 
nine of the states; details will be discussed below. Now that a simple picture of 

g5(6'+ 27r/m) = $(V) + 2nk/m, 
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410 

41 1 

710 ---- 

FIGURE 6. Schematic representations of t--e evolution in time of the modulation patterns in 
a reference frame rotating with the waves. The diagrams show, for each flow state pictured in 
figure 4, a single vortex outflow boundary as it evolves in time for one period of the modulation, 
l/&. It should be emphasized that each diagram represents the time evolution of a single 
vortex boundary, not a stack of vortices a t  an instant of time. Time increaaes downward, and 
the azimuthal angle 8' increaaes (from 0 to 2n) rightward. The heavy black lines show waves 
that have the maximum modulation (greatest flattening). 
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171 k 
3 0 
4 0 

1 
2 

6 - 1  
0 
1 
2 

6 - 1  
0 
1 

7 0 

N t  
31 
16 
17 
18 
18 
17 
18 
20 
20 
20 
19 
20 

RIRC t 
19.3 
12.65 
10.2 
9.6 

15.63 
9.6 
9.2 

12.6s 
10.5 
9.4 

10.2 
8.6 

f i  f i lm j: f; 
1.04 0-34 0.35 0.35 
1.32 0.33 0-44 0.44 
1.38 0.35 0.82 0.47 
1.30 0.33 1.16 0.50 
1-67 0.34 0.15 0.49 
1.72 0-34 0.51 0.51 
1.61 0.32 0.87 0.55 
1-65 0.33 1.40 0.74 
2.03 0-34 0.21 0.55 
2.03 0.34 0-59 0-59 
2.05 0.34 0.99 0.65 
2.38 0.34 0.68 0.68 

t Other N values are possible for each state. 
$ The lowest observed values of R/R,  for each state. These values may differ slightly from 

8 At this R/Rc there is a transition to another MWVF state at lower RIR,. 
those in figure 6 because they correspond to different N. 

TABLE 1. Characteristic frequencies for each MWVF state at its observed onset 

MWVF has emerged from our experiments and from theory (Rand 1981; Gorman, 
Swinney & Rand 1981) only a few measurements are needed to determine if newly 
discovered states fit into this picture. 

4.2. Frequencies in  doubly periodic M W V F  
The Reynolds-number dependence of the frequencies fl and fz is shown in figure 6 
for nine MWVF states, and typical power spectra for those states are shown in 
figure 7. The values of the frequencies at the onset of MWVF are given in table 1. 
All frequencies in this paper are expressed in units of the cylinder frequency; the 
relation for conversion to Hertz isf[Hz] = 0.047 x f(dimension1ess) x RIR,. 

In the doubly-periodic-$ow regime fl is independent of R within the 1 % experi- 
mental uncertainty; however, the variation of fl (for a given m) as a function of k 
is as much as 3 yo, larger than the experimental uncertainty. Coles (1965) found that 
for 8 < R/Rc < 23 the phase velocity of the wave, fi lm, was 0-34 for all N and m. 
We find that f,/m = 0.34 & 0.01 for all R, N ,  m, and k. 

The frequency fi increases monotonically with increasing R,  but the total increase 
over the whole MWVF region is at  most 20 % (see figure 6). The values of fi and fz 
determined from the power spectra (see figure 7) agree with those determined by flow 
visualization. Both the absolute and relative amplitudes of the components of the 
power spectra varied considerably, depending on the position of the scattering 
volume in the annulus, but the magnitudes of the frequencies were independent of 
the scattering-volume position. 

Note that for the 610 state the upper end of the Reynolds-number range is demarked 
by a transition to another MWVF state rather than the disappearance of the waves 
(see figure 6 ) .  Similarly, for the 410 and 512 states the low end of the Reynolds- 
number range for each state is demarked by a transition to anot,her MWVF state 
rather than a transition to WVF. However, in another system in our laboratory the 
4/0 state is stable as R is decreased until it makes a transition to WVF. The difference 
may arise from a dependence of the stability of the 410 state on N or end conditions. 
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FIGURE 0. The Reynolds-number dependence of the frequency measured in flow-visualization 
experiments in the laboratory reference frame : , fi ; m, fi ; A, fs/f1. The dashed lines indicate 
fi values too high to determine visually. Transitions from the 4/0, 5 /2 ,  and 0/0 states to other 
MWVF states are indicated by arrows. 
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FIGURE 7.  Power spectra of the intensity of light reflected by the fluid for the states described 
by figures 4, 5 and 6. All frequency components are integer-linear combinations of fi andf,. 
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Previously we reported that the (doubly periodic) 511 state made a transition to a 
triply periodic state when R/Rc was reduced below R/Rc = 12.2 (Gorman, Reith & 
Swinney 1980; Gorman et al. 1981). A careful re-examination of the data has shown 
that f2 decreases monotonically from f2 = 1-00 a t  R/Rc = 12.2 to fa = 0.87 at 
R/Rc = 9-2 (a range of R/Rc not shown for the 511 state in figure 6) ; the previously 
identified third independent frequency that occurs in the spectra in this range of 
R/Rc is actually the cylinder frequency (fcyl = 1.00)) not a fundamental frequency 
of the flow. The earlier misinterpretation of the data arose because, for R/Rc > 12.2, 
f2 and fcyl are equal. 

The other frequency determined in the experiments is f i ;  values of f4  a t  the onset 
of MWVF are given in table 1. These values of,f;l were calculated from the equation 

which was derived by Swift et al. (1981) from a consideration of the transformation 
from the rotating to the laboratory frame. This equation was verified for each state 
by a direct comparison of f 4  measured from the cine films at a particular R/Rc with 
the values of f4 computed from the measured values of fi and f2. 

4.3. Frequency modulation 
We have examined the 4/0 and 5/0 states and found that the azimuthal travelling 
waves are amplitude and frequency modulated, and the frequency of both modula- 
tions is the same - f2, which for k = 0 is equal to f;. 

If the phase velocity and wavelength of the azimuthal waves were both constant, 
the time T for successive waves to pass an observer in the laboratory would be 
constant. For the m/O states the waves must have equal wavelength, because the 
wave patterns have m-fold axial symmetry. Therefore an oscillation in T would imply 
that the rotational frequency of the ?waves was frequency-modulated. 

We measured T for successive waves by analysing cine films, counting the number 
of film frames that passed between successive wave nodes. We measured for 
20 waves and computed AT = T - for 16 successive waves for the 510 state; 
AT oscillated as shown in figure 8, while for WVF AT was found to be zero. The 
solid line represents a leaat-squares fit of the data to a sine function, from which the 
amplitude of the frequency modulation, 7%, was obtained. The flattened waves have 
a phase velocity which is 14% slower than the S-shaped waves. The frequency 
modulation occurs, within the experimental uncertainty, at  the same frequency as 
that of the amplitude modulation, f;. Similar results have been obtained from the 
frequency modulation of the 410 state. 

We have not measured the frequency modulation for any states with k += 0, since 
in the absence of m-fold axial symmetry one cannot assert that all wavelengths are 
equal. In fact, i t  appears (from visual observations) that for k + 0 the flattened wave 
is stretched relative to the others, but the magnitude of the lengthening is small 
( N 5 yo) if present. 

The presence of frequency modulation cannot be inferred directly from the 
components in the power spectra. For a system such as this in which the fundamental 
components have a strong harmonic structure, amplitude and frequency modulation 
can each produce the same spectral components (Gregg 1977). 

The presence of frequency modulation for the k = 0 states has also been observed 
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FIGURE 8. The deviation A T  from the mean time of arrival (1.20 s) of waves as a function of the 
number of waves that have passed the observer (610 state, RIR, = 10-7). 

directly by using a stroboscope to flash at the frequency fl. In  WVF the wave 
pattern viewed with the stroboscope was stationary, but in MWVF the waves 
oscillated in amplitude and in azimuthal position - the latter motion corresponds to 
a frequency modulation of fl at frequency fh.  Thus in a frame rotating with the 
phase velocity of the waves, film, the waves oscillate azimuthally at  f h ;  the schematic 
diagrams in figure 6 are made in this frame with the effects of frequency modulation 
neglected. 

4.4. Preparation of $ow state8 

Different initial conditions produce different flow states that are stable over the 
same range of Reynolds number. We will describe the procedures we have used to 
obtain the different MWVF states so they can be produced in other laboratories. If the 
system is started from rest and R is varied in a particular way until some h a 1  R is 
reached, the same state Nlmlk should in principle always be produced, since the 
system is governed by deterministic equations of motion. However, in practice our 
acceleration rates are not well controlled, and we observe different states for the 
same starting procedure. 
Our procedures for obtaining different states developed from the following obser- 

vations. (i) For a given N some m values are more probable than others. (2) For a 
given N/m state some k values are more probable than others. (iii) If R is varied 
slowly in the range 6 < R/Rc < 25, N does not usually change; this range contains 
the MWVF regime, 9 5 R/Rc 5 21. For N = 16 to 19, the most probable values of 
m are 6 and 7. Usually even-N values occurred with a fixed upper boundary and odd- 
N with a free upper surface, but odd-N values were often observed with a fixed 
boundary and even-N with a free surface. Because the patterns do not depend on N 
or on the boundary conditions, the states of the flow can be labelled mlk.  

Two principal procedures have been used to start the system. (a)The inner cylinder 
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was started from rest and accelerated in about one second to R/R,  21 6, where a 
WVF state with N = 15, 16 or 17 usually formed. If the motor was shut off and 
restarted after a few seconds, a state with larger N usually formed. This procedure 
was repeated to produce any N between 15 and 2 1. After the desired N was achieved, 
R was slowlyt increased until R/Rc > 9, where both f2 and fi were present. (b) The 
desired N was obtained by procedure (a) ,  and then R was slowlyt increased up to 
R/Rc 21 25, where both fl and fa had disappeared, and finally R was decreased to 
R/Rc < 21, where both fl and fe were present. 

We now describe the way in which particular m/k states were obtained. After a 
state was obtained, it was identified by visual measurements of fl and f2. 

The 6/0 and 710 states were obtained by procedure (a) with N = 20 or 21. The 
6/1 state waa obtained by procedure (b) with N = 20 or 21. 

If procedure (b) was used with N = 15, then a 4/0 state usually formed, while, with 
N = 16 or 17, a 4/1 state formed more often than a 5/0 or 5/ l  state; with N = 18 
or 19, a 5/0 or 5/1 state waa more likely. The 4/2 state was obtained by procedure 
(b) with N = 18 or 19, and the 5/2 state was obtained by procedure (b) with N = 21. 

The 6/ - 1 and 5/ - 1 states were the most difficult to prepare. They seemed to form 
by using procedure (b) with N = 20 or 21 and N = 18 or 19, respectively; how- 
ever, a rapid deceleration to R/R,  = 16 was substituted for a slow deceleration to 
R / R ,  < 21. 

The 11 states described above were all obtained for I? = 20, but the 3/0 state 
was stabilized only at a larger aspect ratio. It was produced by procedure (a).  

As an example, consider the preparation of the 4/2 state. Procedure (a) was 
used to obtain a state with N = 18 or 19, with any value of m. Then procedure ( b )  
was foilowed. If a 4/0,4/1, or 5/k state formed, procedure (b) was repeated until the 
4/2 state was observed. 

5. Comparison of experiment and theory 
Rand ( 1981) has used dynamical-systems concepts and symmetry considerations 

to derive predictions about the space-time symmetry of doubly periodic flows in 
circularly symmetric systems (see also Gorman et al. 1981). We will summarize 
briefly the assumptions and predictions of the theory, and then compare theory and 
experiment. 

Rand notes that the circular symmetry of the boundary conditions implies that 
the equations of motion are invariant under the group of axial rotations ; therefore, 
following a solution from time t and then rotating that solution by 8 (measured with 
respect to the laboratory frame) is the same as rotating the initial conditions by 6 
and then following the solution defined by this procedure for time t .  Rand then 
assumes the following. (a)  In WVF the fluid flow can be represented by an orbit in 
state space that is asymptotic to an attracting periodic orbit (limit cycle) consisting of 
non-axisymmetric states. (See Lanford (1  981) for a discussion of the representation 
of fluid flows by attractors in state space.) (b) The bifurcation from WVF to MWVF 
is a supercritical Hopf bifurcation or some simple variant such as slightly subcritical 
Hopf bifurcation involving hysteresis. This assumption implies that the number of 

t Here slowly means d(R/R,)/dt < 1 min-1. 
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m k n 8  

3 - 1  -1 1 
,o 0 3 
1 1 1  

4 - 1  -1 1 
0 0 4  
1 1 1  
2 * l  2 

6 - 2  2 ' 1  
- 1  - 1  1 

0 0 6  
1 1 1  
2 - 2  1 

m k n 8  

6 - 2  - 1  2 
- 1  - 1  1 

0 6 6  
1 1 1  
2 1 2  
3 f l  3 

7 - 3  2 1 
- 2  3 1 
- 1  - 1  1 

0 0 7  
1 1 1  
2 - 3  1 
3 2 1  

TABLE 2. The integers from equations (1) and (3) that characterize the possible M" statee for 
m = 3, 4, 6, 6 and 7; 8 is the order of the axial symmetry of the flow 

waves, m, is a multiple of the order of axial symmetry of the flow, 8. In MWVF the 
orbit is asymptotic to an attracting two-dimensional torus. 

The following predictions are then derived by Rand. 
(i) The wave pattern seen by an observer fixed in a reference frame rotating with 

the speed of the waves repeats after a basic time T .  The pattern is then the same as 
the original one rotated through an angle 

0 = 2nn/m, (3) 

where 0 is measured with respect to the rotating frame and increases in the direction 
of the cylinder rotation, and n is an integer given by the theory. Values of n for 
m = 3 to 7 are given in table 2. 

(ii) The flow is characterized by two fundamental angular frequencies 

a, = 27r.s(fl+n/7)/m, 8, = 2n/7. (4a, b )  

(iii) The travelling azimuthal waves are, in general, frequency-modulated as well 
amplitude-modulated, and the modulation frequencies are related byfFM = pfAM, 

(iv) Frequency entrainment (where, over some range in R, a,/a, is given by the 

We now compare each of these predictions with the experimental observations : 
(i) The prediction that the only allowed doubly periodic MWVF's are those 

described by (3) is in complete accord with our experiments. We have described the 
observed wave patterns in terms of a temporal phase angle given by (1); the same 
patterns are described in the theory in terms of an angular rotation given by (3). 
Thus a MWVF pattern can be characterized equivalently by either the integers m 
and k or by the integers m, s and n ;  see table 2. The time T for the pattern to repeat, 
shifted by Bnnlrn, is related to fi by T = s/mfi, as figure 9 illustrates for a particular 
case. 

(ii) If a, and a, are fundamentals, then any frequencies, and in particular fl and 

where p is an integer. 

ratio of small integers) occurs only if T + a. 
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FIaunE 9. An example of the relationship between the two times measured in the reference 
frame that rotates with the waves: 7 = s/mf& where f; is the frequency of oscillation of any 
point on the wave pattern, and r is the time required for the pattern to repeat, rotated by 
2nn/m. The schematic diagram is of the m e  type as those shown in figure 6. The parameters 
for the example are m = 4, k = 2,8  = 2, and n = k 1. 

fz, must be expressible as integer-linear combinations of a, and a,. From (2) and (4) 
one obtains 

2mfl = (m/s)R,-nLR,. (5a) 

2mf2 = kQl+ [(8-nk)/rn]Q2. (5b) 

The coefficients m/s, n and k are obviously integers, and ($-nk)/m is apparently 
always an integer (although this has not been proved); hence the prediction that 
a, and LR, are the fundamentals is consistent with the experiments.? 

4.3, the travelling azimuthal waxes have been found to be 
frequency-modulated, and measurements for the 4/0 and 5/0 states yieldf,, = fAM, 

in agreement with the theory, where p = 1. 
(iv) The absence of frequency entrainment is supported by the experiments : 

f2/fl is a strictly increasing smooth function of Reynolds number for all states, as 
figure 6 illustrates. The experimental uncertainty in f2/fl was 2 %  for most of our 
measurements, but some precision measurements on the 4/0 state in which the 
uncertainty in f2/fl was only 0.02 % revealed no evidence for entrainment. 

In  summary, the predictions of Rand are in accord with all of our experiments on 
doubly periodic MWVF. 

The only other theoretical work that relates directly to our experiments is the 
numerical analysis by Yahata (1978, 1979, 1980) of a model with 32 coupled-mode 
equations. The model has one axial mode, two azimuthal modes (corresponding to 
m = 0 and m = 4), and eight radial modes. Using parameters appropriate to our 
experiments, Yahata found four successive dynamical regimes : periodic, doubly 
periodic, triply periodic, and chaotic. 

Yahata identified two frequencies, p1 = 1.5 and pa  = 1.1, in his spectra of the 
doubly periodic regime, and these frequencies were compared with the frequencies 
fl = 1-3 and fz = 0.9 observed by Fenstermacher et al. (1979). However, our 

t Note that the fundamental frequencies which characterize a power spectrum need not be 
present in the spectrum as observable components. 

(iii) As described in 
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experiments have identified the state Fenstermacher et al. studied as the 411 state, 
which does not possess the fourfold symmetry of Yahata’s model. His calculations 
are more appropriate to the fourfold-symmetric 410 state for which fi = 1.3 and 
fi = 0-4. Yahata could also have chosen as fundamental frequencies his spectral 
components at  1.5 and 0.4, which are in good agreement with the measured 
frequencies for the 410 state. The experimental results for the 510,610, and 710 states 
provide a test for this model. 

The triply periodic state found for the model appeared at R/Rc = 20.7 and 
existed up to RIR, = 22.7, beyond which the flow was chaotic. We have found no 
triply periodic states. 

6. Discussion 
6.1. Circularly symmetric systems 

All of the results reported here have been obtained with a radius ratio of 0.88. Time- 
dependent flows in the circular Couette system have been studied for radius ratios 
other than 0.88 (see Snyder 1970; Kuznetsov et al. 1980; Pfister 1981), but the 
existence of MWVF for 7 + 0.88 has not yet been established. 

Travelling azimuthal waves which periodically change their shape have been 
studied in another circularly symmetric flow geometry, a rotating annulus with a 
temperature gradient applied in the radial direction. Hide (1953, 1958) discovered 
that, for some range of the rotation rate and radial temperature gradient, travelling 
azimuthal waves were observed in the annulus, and in another parameter range a 
‘vacillation’ in the shape of the travelling waves was observed. Shape vacillation 
was also studied by Fultz et al. (1959), and later Pfeffer & Chiang (1967) observed 
another type of vacillation, amplitude vacillation, as well as shape vacillation. 
Shape and amplitude vacillation have subsequently been studied by Pfeffer & 
Fowlis (1968), Hide & Mason (1975), Pfeffer, Buzyna & Kung (1980), White & 
Koschmieder (1981) and others. Only White & Koschmieder have obtained power 
spectra and have shown that the vacillating flow is a doubly periodic flow. 

Pfeffer & Fowlis (1968) illustrated amplitude vacillation with figures showing 
time-lapsed sequences of the flow patterns. The flows shown in their figures appear 
to have the same space-time symmetry as some of the states we have observed. For 
example, their figure 5 appears to be a 410 state ; figure 6,510;  and figure 11 ,  51 - 1. 
They show that these states can be viewed as a superposition of travelling azimuthal 
waves, each with its own wave speed and wavenumber. Robert Shaw (private 
communication) has independently suggested that a picture of superimposed travel- 
ling waves could describe the doubly periodic flows we have observed ; Shaw and the 
authors are now testing this hypothesis. 

Vacillation in the rotating annulus was studied theoretically by Lorenz (1963b), 
who developed a model consisting of 14 coupled nonlinear ordinary differential 
equations. Solutions for the travelling azimuthal waves were obtained analytically. 
Solutions exhibiting vacillation were obtained by numerical integration, and Lorenz 
even found non-periodic solutions beyond the vacillation regime. The sequence of 
regimes described by Lorenz is quite similar to the sequence we have observed in the 
Couette system. 

Another cylindrically symmetric flow geometry that has been extensively studied 
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is a fluid contained between concentric spheres with one or both spheres rotating 
(Sawatzki & Zierep 1970; Munson & Menguturk, 1975; Wimmer 1976, 1981; 
Yavorskaya et ul. 1981 ; Belyaev et al. 1979). Complex wavy flows have been observed 
in thissystem, but, t o  our knowledge, modulated (vacillating) waveforms have not been 
reported. 

6.2. Conclusions 
We have shown that the circular Couette system exhibits a multiplicity of doubly 
periodic modulated wavy-vortex flow states, each characterized by two integers, 
m and k, which have a simple physical significance. Using different initial conditions, 
we have discovered twelve different stable states mlk during our two-year study. 
Other stable states can undoubtedly be reached with other initial conditions; in 
retrospect it is surprising that only the 411 state was observed in the first four years 
of study of doubly periodic flow in the Couette system (Gollub & Swinney 1975; 
Fenstermacher et al. 1979; Walden 6 Donnelly 1979). 

Ruelle (1973) suggested that symmetry properties could restrict the types of 
bifurcations that can occur in hydrodynamic systems. The theory of Rand (1981) 
is the first to use symmetry to obtain specific predictions about the dynamics of flows 
in systems with a particular symmetry. As we have shown in 0 5, Rand's predictions 
are in good agreement with our experiments. 

Rand's theory applies to doubly periodic flows in circularly symmetric systems 
which satisfy the assumptions stated in 0 5. However, it should be noted that some 
circularly symmetric systems may have doubly periodic flows that do not satisfy 
all of those assumptions and hence the predictions (i) - (iv) would not apply. 

Fenstermacher et ul. (1979) studied the transition from doubly periodic flow to 
weak turbulence for the 411 state, but this transition has not been studied for any 
of the other 1 1  observed doubly periodic flow states. Ws are making a comparative 
study of the onset of turbulence in the different states with the hope that such a 
study will provide insight into the transition-to-turbulence problem. 
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